USP 797 is a standard for sterility that pharmaceutical compounding and preparation facilities must demonstrate. USP 797 is set by the United States Pharmacopeia and National Formulary (USP-NF) and ensures patient safety by protecting pharmaceuticals from contamination during preparation. Following USP 797 reduces infection, contamination, and improper dosage to maintain superior quality products in facilities such as pharmacies, operating rooms, chemotherapy units, hospital pharmacies, and nuclear pharmacies.
Meeting USP 797 Environmental Quality & Control Requirements
Meeting USP 797 standards is critical to the safety of pharmacy environments, as it ensures clean and sterile conditions for compounding and preparing pharmaceutical products. Sterile compounding pharmacy environments and other cleanrooms can demonstrate compliance by following USP 797 standards for monitoring and controlling airborne particles. It is necessary to follow USP 797 to comply with FDA and local regulations, protect against liability, and remain competitive.
USP 797 provides guidelines for the following:
ACPH. Hazardous drug (HD) storage rooms require at least 12 air changes per hour (ACPH) for refrigerated, sterile, and nonsterile storage. Buffer rooms and anterooms with access to HDs require 30 ACPH, and anterooms without HD access require 20 ACPH. Buffer rooms with a redundant HEPA filtration system require 12 ACPH.
Temperature. Cleanroom temperatures are dependent on the comfort of personnel. It can change relative to the necessary gowning or personal protective equipment (PPE). Sweat and shivering result in more particulate shedding by personnel, so temperatures must not be too low or too high. Uncomfortable temperatures can also encourage staff to shed gowning to cool down or wear unauthorized clothing for warmth.
Humidity. Clean rooms must maintain an adequate humidity level to prevent personnel from sweating due to high humidity and static buildup in low humidity. Low humidity can also cause residual adhesives from labels to stick to surfaces like gloves. According to USP 797, relative humidity (RH) must be below 60% at all times.
Pressure. Non-HD compounding pharmacies must maintain positive air pressure to keep airborne particulates, contaminants, and dirt from entering through doors, crevices, and ceiling tiles from outside the cleanroom. HD compounding pharmacies require a negative pressure buffer and positive pressure anteroom to prevent contamination and control HD particles.
Air quality. Maintaining quality standards requires monitoring of airborne particles. Viable particles require monitoring every week, and non-viable particles require monitoring every six months.
Why Your Central HVAC System Won’t Help You Meet USP 797
Sterile compounding pharmacies within confined spaces often become a hotspot when using a standard building air conditioner that cannot keep up with the humidity. Relying on a standard HVAC system can often times result in a space above USP 797 humidity requirements. Maintaining USP 797 compliance requires an HVAC system designed for pharmaceutical applications. Air Innovations offers HVAC solutions to maintain USP 797 compliance.
Air Innovations HVAC Solutions
The HEPAir® Cleanroom HVAC Unit by Air Innovations is the ideal solution to maintaining USP 797 humidity, temperature, pressure, and air quality standards for sterile compounding pharmacies. The HEPAir unit operates independently of the building HVAC system, only serving isolation areas such as cleanrooms, pharmacies, and laboratories. Facilities can also implement several HEPAir units to provide additional air quality and climate control where necessary.
Contact Us for Environmental Control Solutions for Your Compounding Facility
Maintaining USP 797 requirements in your sterile compounding pharmacy space is crucial in delivering a safe product. Rely on Air Innovations’ HEPAir Cleanroom HVAC Unit to ensure USP 797 compliance. As a leader in designing and manufacturing environmental control solutions, we have the necessary knowledge and experience to deliver quality systems to help you abide by critical industry standards. For more information about our HEPAir Cleanroom HVAC Unit or other environmental control solutions, contact us today.
Cleanrooms are integral to countless operations around the world. Scientists, manufacturers, and a bevy of other industry professionals rely on these rooms to mitigate the risk of contamination in products or processes. It’s important to understand the different cleanroom classifications and guidelines behind how these rooms are constructed and utilized to determine which is the best fit for your application.
Cleanrooms are man-made, controlled environments. These spaces are designed and built specifically for use in industries which rely on extreme cleanliness and predictability. Manufacturing and scientific research applications regularly utilize cleanrooms to perform daily tasks and help with specialized projects. Virtually any industry involving work that could be negatively impacted by small particles necessitates the use of cleanrooms.
A well-conditioned cleanroom offers researchers and other workers the opportunity to perform tasks in an environment with low levels of pollutants. That means that common problems like dust, chemical vapors, and airborne microbes can’t interfere with the work at hand.
Cleanroom Classifications
Cleanrooms are subject to a range of classifications based on their capabilities and intended applications. The functionality of the cleanroom and the quality of air it facilitates will largely determine the classification.
Cleanroom classifications measures how many particles of a certain size (over 0.5 mm) exist within one cubic foot of air inside the room. FED-STD-209E regulations classified cleanrooms based on the allowable particles contained within each cubic meter of air in conjunction with the size of said particles. These regulations are still referenced frequently when determining cleanroom requirements but have largely been replaced by the stricter International Standards Organization (ISO) classifications.
ISO 14644-1:2015 Cleanrooms and Associated Controlled Environments ranks cleanrooms in terms from function on a scale from 1–9. A cleanroom classified as ISO Class 1 exemplifies the highest possible cleanliness and air purity standards, while an ISO Class 9 would have the lowest requirements. The following table demonstrates the exacting requirements for each cleanroom classification:
ISO 14644-1: 2015
FED_STD-209E
Maximum Allowable Particles in One Cubic Meter of Air
Size of Particles
> 0.1 micron
> 0.2 micron
> 0.3 micron
> 0.5 micron
> 1 micron
> 5 microns
Class 1
N/A
10
2
0
0
0
0
Class 2
N/A
100
24
10
4
0
0
Class 3
Class 1
1,000
237
102
35
8
0
Class 4
Class 10
10,000
2,370
1,020
352
83
0
Class 5
Class 100
100,000
23,700
10,200
3,520
832
29
Class 6
Class 1,000
1,000,000
237,000
102,000
35,200
8,320
293
Class 7
Class 10,000
N/A
N/A
N/A
352,000
83,200
2,930
Class 8
Class 100,000
N/A
N/A
N/A
3,520,000
832,000
29,300
Class 9
Standard room air
N/A
N/A
N/A
35,200,000
8,320,000
293,000
Cleanroom Design
A cleanroom’s design will be directly influenced by its required ISO classification. The amount of square footage that an organization can set aside for their cleanroom impacts numerous components of the room—the clean zone, airlocks, and gowning room must all be considered carefully as well. The latter areas must be carefully designed to mitigate particle migration from the exterior into the cleanroom.
Methods for improving the cleanliness capabilities of a cleanroom include:
Adding airlocks
Improved filtration
Increasing the number of air changes per hour
Cleanroom Services From Air Innovations
Since our founding in 1986, Air Innovations has operated by a commitment to continuous innovation and growth. As such, we are continually improving our capabilities and offerings. Our expert staff designs and manufactures HVAC systems for use in a variety of cleanroom applications and other critical environments.
Interested in learning more about cleanrooms? Download our “Cleanroom Technology” whitepaper. The whitepaper illustrates how temperature, humidity, filtration, and pressure can affect applications. We also have whitepapers available covering the pharmaceutical industry, the semiconductor industry, and our Micro Environments product line. These whitepapers can be found here. More information regarding our work with cleanrooms and other industries can be found on our case studies page.
HVAC systems are essential components in the functionality and appeal of all modern buildings. Well-designed and efficient HVAC systems go well beyond ensuring comfortable temperatures and fresh air for facilities. They also play a key role in the production and testing processes of a broad spectrum of industries.
HVAC systems play a crucial role in pharmaceutical engineering and manufacturing because they have a direct impact on the production environment. Optimized HVAC units can help pharmaceutical companies Mining and Drilling, pass inspections, and remain CGMP-compliant, and more.
All You Need to Know About Specialized HVAC Systems
What is a Specialized HVAC System?
The acronym HVAC stands for heating, ventilation, and air conditioning. Specialized HVAC systems control the temperature, humidity level, and air quality in a space to ensure the required specifications for your application are met.
Types of HVAC Systems We Design & Manufacture
We specialize in the design and manufacture of advanced HVAC systems for the precise control of temperature, humidity, filtration, and pressurization for equipment and processes. The three main configurations of HVAC systems we manufacture are integrated, mounted, and standalone in standard or custom solutions.
Integrated HVAC
Integrated solutions are designed to fit seamlessly within existing equipment structure, allowing for a smaller size and footprint, greater system efficiency, and lower installation cost.
Mounted HVAC
ECUs that are mounted to an existing system can be designed to meet system weight constraints, provide a reduced ECU footprint, and offer close proximity to the process.
Standalone HVAC
Standalone units can be placed in the space surrounding your equipment and offer maximum flexibility in system location, installation, configuration, and performance capability.
Explosion-Proof HVAC
Less common but no less critical, explosion-proof HVAC systems are an essential aspect of many industrial applications. For example, ore mining/processing facilities can make use of these units to prevent an explosion of coal dust particles in the air.
Other industries that utilize explosion-proof HVAC systems include:
Nowadays, many off-the-shelf explosion-proof units are available. However, companies that require explosion-proof environmental control units often need to ensure that their HVAC systems supplier has the capability to provide a tailored solution for their particular application.
Industries and Applications
Industries ranging from homeland security to aerospace use specialized HVAC solutions as an essential part of their daily operations. The following are some examples of specific industries and applications that utilize HVAC systems.
Aerospace applications require strict environmental control in everything from research and development to launch areas. At Air Innovations, we’ve supported a variety of unique aerospace projects, such as clean room filtration, environmentally controlled transportation of aerospace components, and strict environmental control of launch areas.
For example, one rocket’s fueling system demanded a dry dew point of -22° C just before launch. Any remaining moisture would condense and transform into ice on the rocket’s piping, creating a dangerous situation. The solution to this quandary was an in-line desiccant dryer surrounded by two tailored environmental control units used to eliminate moisture and maintain tight temperature tolerances.
Durable HVAC units assist in temperature and humidity maintenance at airport terminals, including security checkpoints and baggage claim areas. Additionally, explosives detection devices (EDDs) at airports demand strict internal control of temperature and humidity variables in order to function properly.As such, the Homeland Security Department relies on specialized HVAC units for these applications.
Mining and drilling companies use environmental control units to keep electrical cabinets of centrifuge machines cool. Centrifuges eliminate slurry during drilling operations, and are therefore an indispensable component of the overall extraction process. ECUs that keep their cabinets cool help prevent overheating, fires, explosions, and other dangerous circumstances.
Biotech and pharmaceutical companies frequently employ specialized HVAC units for strict control over temperature, humidity, and dew point, especially when handling sensitive equipment, or performing processes that require certain environmental conditions to succeed.
Computer rooms, laboratories, hospitals, and process isolators often make use of cleanrooms. HVAC units designed for cleanroom use often come with features such as positive/negative pressure control, once-through or recirculating air flow, and alarms triggered by the slightest variance from set tolerances.
The Pharmaceutical Industry and HVAC Systems
The Importance of HVAC Systems for the Pharmaceutical Industry
Why are well-functioning HVAC systems so important to the pharmaceutical industry today? While there are many factors involved, but here are just two of the reasons they are so essential:
Modern diagnostic machines need to operate within very strict temperature and humidity tolerances so that the integrity of powdered and fluid reagents is not comprised. The consequences of a misdiagnosis or false reading from the introduction of unanticipated moisture, for example, could be serious for both patient and medical provider alike. Customized HVAC units that ensure stable environmental conditions—whether cold, hot, or dry—and integrate well into often limited space, are key pieces of an effective diagnostic process.
Moisture can be one of the worst enemies of modern medicine production. In every phase of production—from milling to compounding to coating—excess moisture can cause manufacturing inefficiencies, weaken the medicine’s effect, or in the worst-case scenario, completely ruin an entire batch of product. Specialized HVAC units that enforce a specified dew point based on the application all but guarantee that there will be no excess moisture from the air to cause production issues.
System Design
There are several design considerations that engineers must apply to HVAC systems intended for pharmaceutical applications. Ideally, architectural components should dovetail with HVAC design factors, such as pressure differential cascades and cross-contamination control. Adequate ventilation and filtration are important considerations for laboratory testing areas and cleanrooms.
Additionally, HVAC engineers must implement systems that ensure strict control over temperature, relative humidity and/or dew point, without interfering with the actual pharmaceutical manufacturing process.
Operational HVAC Optimization in Pharmaceutical Facilities
After HVAC room requirements have been established, there are ways to optimize HVAC system operations to keep costs low and efficiencies high. Some optimization measures could include:
The reduction of air-change rates
Optimized temperature and humidity limits
Improved control sequences for use of floating set-points and dead-band control
Changeover to a two-port variable volume system
The addition of airflow meters and air volume control components
Efficient and Custom HVAC Solutions at Air Innovations
Air Innovations provides several HVAC products specifically designed for use in the pharmaceutical industry. These include:
In another case, a client needed a chemical process control unit that would hold set temperature and humidity levels in widely varying conditions all over the globe, while also operating on a continuous, year-round basis. Air Innovations provided an HVAC unit that depends on two independent cooling coils, along with process fans that alternate operation time. Various sensor inputs help to manage switch-over intervals. As a result, the cooling coils continue running without defrost interruptions, even in sub-zero temperatures.
HVAC systems are an essential aspect of pharmaceutical manufacturing. If you’d like to learn more about how Air Innovations can provide a workable, highly-customized, and efficient HVAC solution for your manufacturing needs, reach out to us today.
Effective positive and negative pressure rooms are an important part of industrial climate control systems. In medical settings, these rooms prevent the spread of infectious contaminants and maintain sterile or restricted spaces and are also referred to as ProtectiveEnvironments (positive pressure rooms) and Airborne Infection Isolation Rooms (AIIR) (negative pressure rooms). Negative or positive pressure rooms are a necessary part of a wide range of medical and research environments, as they help maintain clean conditions in the smallest clinic to the largest hospital.
Understanding Positive and Negative Pressure Rooms
Positive pressure rooms maintain a higher pressure inside the treated area than that of the surrounding environment. This means air can leave the room without circulating back in. In this way, any airborne particle that originates in the room will be filtered out. Germs, particles, and other potential contaminants in the surrounding environment will not enter the room. In medical settings, a positive pressure room (protective environment) allows staff to keep vulnerable patients safe from infections and disease.
In contrast, a negative pressure room uses lower air pressure to allow outside air into the segregated environment. This traps and keeps potentially harmful particles within the negative pressure room by preventing internal air from leaving the space. Negative pressure rooms in medical facilities isolate patients with infectious conditions (AIIR) and protect people outside the room from exposure.
Positive and negative pressure rooms both require a number of additional components to remain effective: Building positive and negative pressure rooms requires the use of specialized construction and climate control equipment. A minimum of 12 air-flow changes each hour must be maintained in order to sustain the desired environment and depending on the size and purpose of the room, more may be necessary.
Recirculation of air through HEPA filters to control the movement of airborne contaminants
Self-closing entryway with an adequate seal
Thoroughly sealed floors, ceiling, walls, and windows
Fans and ductwork to move air in the desired directions
A monitoring system that allows users to adjust pressure when necessary
Intermediate environment between the pressure room and outside environment for deliveries, observations, and protective gear storage
Some medical facilities additionally incorporate UV radiation into the system to help maintain a sterile environment. Using UV light in a filtration system sterilizes particles and reduces viruses (such as coronavirus) in the quarantine space, helping to protect healthcare workers who enter the room to service the quarantined patient.
Positive and Negative Pressure Rooms in Hospitals
Positive and negative pressure rooms are an essential part of controlling the spread of infectious diseases within large facilities such as hospitals. Negative pressure rooms (airborne infection isolation rooms) are a common solution in infection control efforts. Hospitals use them in inpatient rooms to ensure infectious germs don’t spread throughout the facility via the HVAC system. Hospitals usually design the following areas as negative pressure environments:
Waiting areas, especially in emergency rooms
Triage areas
Bathrooms
AII (airborne infection isolation) rooms
Autopsy and dark rooms
Soiled laundry areas
Decontamination spaces
Positive pressure rooms are usually used in scenarios that must continually filter harmful contaminants out of the environment. This makes them helpful when treating patients with compromised immune systems because the introduction of any harmful element will be efficiently filtered out. They’re also used in situations that must continually maintain a specific type of atmosphere in a room, such as human and animal nurseries. Other uses of positive pressure rooms include in vitro fertilization labs and operating theaters.
Installing Your Pressurized Room
Hospital managers must carefully plan their pressurized room to ensure they satisfy the following requirements:
The room fits the facility’s needs and space
The room conforms to applicable legal regulations
The room fully protects patients and the general public from the spread of infectious diseases
Efficiently installed positive and negative pressure rooms mean the difference between a healthy environment for hospital patients and one compromised by infectious pathogens.
Dew point and humidity are important environmental factors in industrial settings. Although both these terms describe the amount of moisture present in an environment, some crucial differences exist between them.
Understanding the differences between an environment’s dew point and humidity is essential for selecting an optimal humidification or dehumidification system for your business or facility. Knowing the amount of moisture present in your internal climate as well as the point at which it condenses will allow you to better control the systems that govern these factors.
Understanding Humidity and Dew Point Control—Why Is It Needed?
Humidity measures the amount of water vapor present in the air. Absolute humidity defines how much water the surrounding air holds, and relative humidity is the percentage of air that contains liquid vapor at the time point of measurement. Specific humidity expresses the relationship between moist and dry air in a single system.
An environment’s dew point is the temperature needed for water vapor to condense and form on surfaces. A higher dew point means a higher atmospheric temperature at which dew forms.
Another way to describe an area’s dew point is the point at which its air reaches 100% relative humidity. At this point, the air has absorbed the maximum amount of moisture that it can retain and introducing any further moisture to the system results in fog or precipitation. This also occurs when the temperature is reduced in an environment that has 100% relative humidity.
A wide variety of industries rely on controlling the relative humidity and dew points to maintain good product quality and optimal working conditions:
Food distribution centers use humidity control systems to increase shelf life and avoid exorbitant energy prices
Humidity control prevents the spread of pathogens in medical facilities
Production facilities that work with hazardous chemicals control air moisture content to reduce the risk of volatile chemical reactions
Storage facilities use humidity control systems to keep porous or delicate materials from spoiling
Finding the correct moisture content for a room also increases its comfort for people. Commercial and industrial operations use humidity control systems to maintain comfortable internal environments without incurring large energy bill fluctuations.
Humidity Control Solutions for Multiple Industries
Environmental control companies must constantly innovate to create humidity control systems optimized for specific industrial environments. To use a specific example, biotherapy reagent packaging plants require systems that successfully balance high evaporative loads and heat. Designers of humidity controls for these kinds of facilities must customize clean rooms to consistently maintain high safety and health standards.
In another example, aerospace OEMs require large industrial cooling systems to maintain good manufacturing environments for delicate technological systems. Humidification control systems must meet narrow temperature, dew point, and humidity requirements to prevent corrosion or damage to sensitive electronic equipment.
Semiconductor manufacturers also rely on effective humidity control systems for this reason. Climate control systems for these facilities must achieve critical tolerances for humidity and temperature in both near-saturation environments and dry or trace-moisture facilities. Additionally, it is especially essential that if an application is using outside air, limited humidity fluctuation rates are considered for the process.
Control Moisture Buildup with Air Innovations
Humidity control in industrial environments improves product quality, industrial compliance, and employee, customer, and patron safety. Air Innovations designs a full suite of humidification control systems for settings that range from industrial clean rooms, HVAC systems, and factory floors.
If you would like to learn more about how we can help control the moisture content of your facility or business, be sure to contact us today.
If you would like to see case studies, view our general case studies page. We also have whitepapers available covering multiple industries including the the aerospace industry, the semiconductor industry, the pharmaceutical industry, and our Micro Environments product line.